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Abstract. W e  investigate the effect of the energy-dependent model densities of 
states on the DC conductivity of the small-polaron hopping regime in disordaed rys- 
tems. The DC conductivity behaviour is obtained for the high- and lowtemperature 
c ~ s e s ,  ignoling or taking into account correlations between bonds due to the energy 
of the c o m o n  site. 

1. Introduction 

According to percolation theory (Ambegaokar el al1971) the study ofelectron motion 
between localised states that are randomly distributed in energy and position, in 
disordered systems is equivalent to the study of the possibility of the passage of electric 
current through a network of impedances Zi, that connect the different lattice sites i 
and j. The magnitude of these impedances depends on the site energies E;, E, and 
the distance Rij between the two sites. The expression for the impedances Z, is given 
by 

Zij = [(eZ/rc)rpj(R,j,Ei,Ej)]-l (1) 

where r:, is the average equilibrium transition rate, which depends exponentially on 
R;, and Ei, E j ,  e is the carrier’s charge and IC is the Boltzmann constant. Because of 
the exponential dependence of Zi,, R;,, Ej  and E,, the individual impedances change 
by many orders of magnitude. Therefore, the random network can be decomposed into 
three kinds of regions. (i) ‘Short-circuits’, which are characterized by the impedances 
Z;, < 2,. (ii) ‘Open-circuits’, which are characterized by high impedances Zjj  > Z, 
through which we have no passage of electric current. (iii) Impedances Zi j  N Z,, 
which interconnect small clusters of low impedances and form a conductive cluster 
through the material. The inverse of the magnitude of impedances Zij N Z,, Z;’, 
characterizes the macroscopically observed Conductivity of the material. The average 
equilibrium transition rate, r:j, is given by Ambegaokar e t  ol (1971) 

(2) 
r:j = [np(l - nj0)]’/*[+(1- nil 0 1/2 [-,i,7ji]1/z 
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where np is the equilibrium occupation probability of the ith site and yij is the intrinsic 
transition rate. This is of the general form 

G P Triberis e t  a1 

^iij = 7oex~(-2aR;,)ex~{f[(E,, E j ) / 2 1 W l  (3) 

where f ( E i ,  E j )  is a function of the site energies and a-' is the spatial extent of the 
electronic wavefunction localized at a single site. 

The analytical forms of the intrinsic transition rate for the small-polaron disor- 
dered regime, for the high- and low-temperature cases, are given by Emin (1975a, b), 
Tribe& and Friedman (1981) and Triberis (1985a). Triberis and Friedman, in order 
to evaluate the intrinsic transition rate yij in their studies, introduced the generalized 
molecular crystal model (GMCM). This has been described in some detail by Triberis 
and Friedman (1981) and Triberis (1985b). Here we summarize i t  very briefly. 

The model Hamiltonian is 

where (mlVln) is the overlap part, In) = li, Ink)) are the eigenstates of N, and H, is 
the zeroth-order (i.e. that for J = 0) Hamiltonian used by Holstein (1959). J is the 
standard electronic overlap integral of the tight binding theory (Holstein 1959). The 
corresponding eigenvalues are 

Here, the totality of vibrational quantum numbers { .  . , , n h , .  , .) for the occupation of 
the site with position vector T;, is represented by I n k ) ,  

E; = e,(O) - Eb(i) (6) 

is the electronic energy when the electron resides on site i, c;(O) is the local electronic 
energy and 

Eb(i) = N-' x ( A f / 2 M w i )  
k 

(7) 

is the small-polaron binding energy. N is the site number of lattice sites, and A; is 
the electron-lattice interaction parameter. 

Equations (6) and (7) show the essential features of the GMCM which are (i) a 
site-dependent local electronic energy, c i (0) ,  and (ii) a site-dependent electron-lattice 
interaction parameter, A i ,  and concomitant binding energy, Eb(i) .  Then the expres- 
sion for Zij takes the form 

Zij = Zo exp(tij) (8 )  

where 

and Egj depends on the position of the sites i and j with respect to the Fermi level 
and on the form of t.he exponential dependence of the intrinsic transition rate on the 
site energies. 



The small-polaron hopping regime in disordered systems 339 

Thus the percolation condition is 

zij I 2, (11) 

r;j 5 s,. (12) 

or 

Pairs of sites with energies E; and Ej being at a distance Rij belong to the per- 
colation path if they obey the percolation condition (12), which can also be written 
as 

where 

r,,, = rem (14) 

E,,, = KT&. (15) 

Any link with Rij > r,,, will violate the inequality (13) and not be on percolation 
cluster regardless of values of Ei, E,. Any link with IEijl > E,,, will violate the 
inequality (13) and not be on percolation cluster regardless of the values of Rij. 

It  is .& that characterizes the DC conductivity of the material, which varies as 

Inu - -[,. (16) 

Triberis and Friedman (1981, 1985) and Triberis (1985a) presented, using perco- 
lation arguments, two methods for the calculation of the conductivity of the small- 
polaron hopping regime in a disordered system, where firstly they ignored (uncorre- 
lated hopping) and secondly they took into account correlations between bonds due 
to the energy of the common site (correlated hopping). To avoid cumbersome calcu- 
lations in these studies, and in many others related to the subject (Austin and Mott 
1969, Ambegaokar el a1 1971, Shklovskii and Efros 1976, Serota e t  a[ 1986, Triberis 
1987, 1988a), the densities of states (DOS) used were taken to be a constant over the 
energy range E,,, i.e. (I) N(E,)  = N(E,)  = No = constant, where in the small-polaron 
studies E,,.&', are the small-polaron binding energy occupying site i or j, respectively, 
assuming the disorder energy to be mainly polaronic i.e. lEi[ N Eb(i)  and E, zz E,(j) 
(Triberis and Friedman 1981), and E,,, is the maximum energy involved in the perco- 
lation condition. 

They found that the DC conductivity varies as 

Inu - -& = [-(To/T)"] (17) 

where the analytical form for To, and the value of v depend on the case considered 
i.e. uncorrelated or correlated hopping, high or low temperatures. 

The DC conductivity behaviour of a variety of chalcogenide glasses such as 
Ge,Sb,Se,, As,Se, (Mohan and Rao 1985), As-Te based glasses (Triberis 1986), 
phosphorushybrate and phosphotungstate glasses (Selvaraj and Rao 1988) and the 
DC conduction in RF sputtered S O ,  films (Meaudre el d 1983, Meaudre and Meau- 
dre 1984, Triberis 1987, 1988a) have been very satisfactorily analysed using Triberis 
and Friedman's model (1981) in which correlations are ignored. 
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Recently 'Riheris (1988b) suggested that, in order to interpret consistently the 
conductivity of V,O, thin layers deposited from gels (Bullot et al 1984), it is necessary 
to take correlations into account, The same model (Triberis and Friedman 1985) has 
been used to interpret the DC conduction of ternary Nh-W oxides (Ruscher et a l  
1988). 

Finally the importance of correlations in the study of the conductivity has been 
ascertained analyzing experimental results on the DC conductivity of V,O,-P,O, 
glasses (Triberis 1990). 

It was noticed (Triberis and Friedman 1981) that a more appropriate choice of the 
DOS for the actual physical situation could be one that takes into account the fact 
that the lower-energy states are less 'dense'. 

This will affect the DC conductivity. I t  is To, as well as the T-dependence of the 
conductivity, which is determined by the exponent U, that are affected by the particu- 
lar choice of the formof the DOS. Pollak (1972,1978), Bijttger and Bryksin (1976) have 
also reported on the effect of the DOS on the behaviour of the DC conductivity, in the 
case of variable range hopping a t  low temperatures including correlations. Different 
fractional laws for the DC conductivity from those obtained using the constant DOS 
have been observed in amorphous, heavily doped and strongly compensated semicon- 
ductors (Pollak 1972, 1978 and Bottger and Bryksin 1976). They pointed out that for 
these materials a DOS of the form N ( E )  = N,E" is more appropriate. In their stud- 
ies the lattice deformation due to the presence of the carrier as well as uncorrelated 
hopping and high temperatures have not been considered. 

In order to investigate the effect of the DOS on the DC conductivity of the small- 
polaron hopping regime in disordered systems, in the present work we evaluate the DC 
conductivity using energy-dependent model DOS, consistenl~with the physical situation 
under study of the form: (11) N ( E )  = NoE, (111) N ( E )  = N,E", (IV) N ( E )  = 
No + XE, X >O for uncorrelated hopping (section 2; low temperatures, hw, > I<'T 
section 2.1, and high temperatures, hw, < KT, section 2.2) and correlated hopping 
(section 3; low temperatures. section 3.1, and high temperatures, section 3.2). For 
every form of the DOS used, No is expressed in the appropriate for this form units. For 
completeness we also present previously published results for N ( % )  = No = constant, 
for the cases of uncorrelated hopping (high temperatures) and correlated hopping (low 
and high temperatures). 

In the following we m u m e  that we have a band of localized states over the Fermi 
level ( E F  = 0), taking into account the two possible configurations of the sites involved 
(i) E,  > Ei > E, > 0 and (ii) E,,, > Ej  > E; >0, i.e. hops downwards or upwards 
in energy according to the energy distance of the two sites with respect to the Fermi 
level. 

2. Uncorrelated hopping 

2.1. The low-temperature regime 

For this case the average number of impedances of magnitude Z, or less connected to 
a given site, P(Z,), is given by (Triheris 1985a) 
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where 

R' E (r,,,/Em)(Em - E ) .  (19) 

Here, the indices have been dropped. For convenience, for 0 we take the value 1.7 
(Pollak 1972) and the limits of integrations are obtained from the corresponding per- 
colation condition, which is 

with 

It is tC that  determines the critical impedance, which is given by 2, = 2, exp(<J . 
I. N ( E )  = N o  = constant. 
From (18) we obtain 

To = 6.49a3/NoI< (23)  

(24) v =  r 4 '  

This is in agreement with the results obtained by Ambegaokar el a1 (1971) and other 
workers, for the case of variable range hopping, with a difference appearing in the 
numerical factor in To. 

For energy-dependent DOS we have the following. 
11. N ( E )  = N o E .  

To = 5.71a3/Z/N,"ZIi 

v = 215. 

I n .  N ( E )  = NoE" 

To = [0.27a3(n + l ) (n  + 2)(n + 3)(n + 4)/NoI?+']'~"t' (27) 
n + l  
n + 4 '  

v =  - 

For n = 0 , l  we recover the results obtained using the model DOS (I) and (11) respec- 
tively. 

IV. N ( E )  = NO + XE, X >O. 
For this case the percolation condition, P(2,) = 0, is 

e. 
The enhancement of the conductivity due to the linear energy-dependent term, 
XE, appearing in the density of states, can be numerically obtained from (29). 
Pronounced deviations from the T-'J4 behaviour due to this term do not seem 
to appear. In figure 1 we plot +(-Inu) against T-'l4 for different values of 
X,(0,1O2',5 x loz2) e W 2  applying (29). We have taken representative val- 
ues of the parameters involved i.e. a-' = 2 A, No = 5 x 10'' eV-' cm-3 and T in 
the range 50-120 K. 
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2.2. The high-temperature regime 

Here, P(Z,) is given by (Triberis and Friedman 1961) 

(30) 
F ' ( Z c ) = 8 = / E m  [ I  *' - N ( E - A ) N ( E ) ( L R ' 4 ; R 2 d R ) d E ] d A  1 

0 A N$ 

where 

A' ( E ,  + A)/Z 

R' E (r,/E,,,)[E,,, - (2E - A)]. 

The limits of integrations are obtained from the corresponding percolation condition 

where 

7, (F,/2a) 
E ,  I<'T.$ 

IC' s 4/3K 

A Ej - Et. 

I. N ( E )  = N ( E  - A) = No = constant. 
We obtain (Triberis and Friedman 1981) 

To = 8.5N:12cr3/2/NoIC 

v = 215. 

For energy-dependent DOS we have the following. 
11. N ( E )  = N o E .  

To = 6 .45N~14a314 /N~i21<  
U=.+ 7 '  

(38) 

(39) 
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111. N(E)  = NoEn.  

2 n + 2  
2 n + 5  

y =  - 

while an analytical expression for To cannot be obtained. For n = 0 , l  we recover, for 
U, the results obtained using the model DOS (I) and (11), respectively. 

IV. N ( E )  = No + XE, X >O . 
For this case the percolation condition, P(ZJ = 8 ,  is 

R = [1+ 0 . 0 4 2 ( X ~ i ~ / N o ) 2 ~ ~ ) ] 0 . 0 2 3 ( N o ~ T / ~ ~ ' z ~ 3 ' z ) z ~ 5 .  (43) 

This can be treated numerically. 

3. Correlated hopping 

3.1. The low-temperature regime 

For this case, the average number of impedances of magnitude Z, or less, connected 
to a site of energy E j ,  P(Z,/Ei), is given by ('Itiberis 1985a) 

E ,  
P(Z,/E) = / N(Ej)dEj  ( lR' 4rR2 dR) + Ly N(Ej)  dEj  ( LR'' 4rR2 dR) 

0 

where 

R' z (rm/Em)(Em - Ei) (45) 

R" (rm/E,,,)(E,,, - E ~ ) .  (46) 

Averaging P(Z,/E,) with respect to E j ,  we obtain the percolation condition 

I. N(E)  = N ,  = constant. 
We obtain (Triberis 1985a) 

To = 1? .801~/N~I i  

U =  1 
4 '  

For energy-dependent DOS we have the following. 
11. N(E)  = NoE. 

To = 11.63a312/N,'1ZIi 

U =  2 
5 '  
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Figure 2. g(n)-values for direrent n. (0,1,2,. . . , E ) ,  

111. N ( E )  = NoE". 

n + l  
n + 4 '  

y =  - (53) 

We have evaluated g(n) analytically, Because of its rather complicated form in figure 2 
we present g(n) for different values of n,  (0 ,1,2, .  . . ,8). For n = 0 , l  we recover the 
results obtained using model DOS of the form (I) and (11), respectively. 

I V .  N(E)  = No + XE, X > 0. 
For this case the percolation condition, P(2,) = 8, is 

NOKT 
0 . 0 9 5 7  E,' (54) 

This can be treated numerically. 

9.2. The high-iemperaiure regime 

Here, P(Z,/E,) is given by (Triberis and Friedman 1985, Triberis 1985a) 

where 

RI G ';-(E, - E; - E ~ )  (56) 

(57) 

E m  
E' E E, - Ej. 

P(2,) is given by (47) using P(ZJE,) given by (55). 
I. N(E)  = No = constant. 
We obtain (Triberis and Friedman 1985, Triberis 1985a) 

To = 12.5a3/NoIi 

y = i  
4 '  

For energy-dependent DOS we have the following. 

(58) 

(59) 



The small-polaron hopping regime in disordered systems 345 

11. N ( E )  = NoE. 

To = 

U =  2 S '  

111. N ( E )  = NoE" 

n +  1 
n + 4  

I / -  

while an analytical expression for To cannot be obtained. For n = 0 , l  we recover, for 
U, the results obtained using model DOS of the form (I) and (11), respectively. 

IV. N ( E )  = No + XE, X > 0.  
For this case the percolation condition, P(2,) = 0, is 

This can be also treated numerically, 

4. Comparison with other theories-conclusions 

In the present work we investigated the effect of the DOS of the form N ( E )  = NoE" 
and N ( E )  = No + XE, X > 0 ,  on the DC conductivity of the small-polaron hopping 
regime in disordered systems. Analytical expressions for the DC conductivity, which 
generally varies as Ina - -(T0/T)', have been obtained. 

For the case of correlated hopping our result for Y (i.e. Y = 5) agree with those 
predicted by other workers (Pollak 1972, 1978, and Bottger a n j  Bryksin 1976), for 
the case of variable range hopping. 

In their studies the lattice deformation due to the presence of the carrier, which 
is a basic ingredient of the present work, have not been taken into account. Neither 
they nor any other workers have reported analytical expressions for To, as we do, for 
energy-dependent DOS 

According to the present work, for the same temperature range (i.e. low or high 2'): 
(i) the exponent U, which determines the 2'-dependence of the conductivity, increases 
with n ,  and (ii) To diminishes with n .  

Finally, for a given model DOS when correlations are taken into account Y does 
not change with the temperature range. For uncorrelated hopping, U changes with 
the temperature range and in particular U (high 2') > U (low 2'). 

In this work we investigated the effect of energy-dependent model DOS on the DC 
conductivity of the small-polaron hopping regime in disordered systems. The choice 
of the DOS is expected to affect not only the DC conductivity but transport coefficients 
such as the thermoelectric power as well. This will be presented in afuture publication. 
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